Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Nezihe CCalıskan, ${ }^{\text {a }}$ * Cemile Daĝ, ${ }^{\text {a }}$ Mustafa Serkan Soylu, ${ }^{\text {a }}$ Alaaddin Cukurovali ${ }^{\text {b }}$ and Nurettin Aykut Koksal ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ${ }^{\mathbf{b}}$ Department of Chemistry, Arts and Sciences Faculty, Firat University, 23119 Elaziĝ, Turkey

Correspondence e-mail: nezihec@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.100$
Data-to-parameter ratio $=19.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Amino-4-(3-methyl-3-p-xylylcyclobutyl)-1,3-thiazole

In the title compound, $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}$, an intermolecular $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ hydrogen bond and an $\mathrm{N}-\mathrm{H} \cdots \pi$ interaction link two molecules, forming a dimer.

Comment

Various thiazole derivatives show herbicidal, anti-imflammatory, antimicrobial and antiparasitic activity (Koparir et al., 2004; Ahmedzade et al., 2003), and also liquid crystal properties (Coghi et al., 1976). Aminothiazoles have been extensively studied for a range of biological and industrial applications (Lynch et al., 1999; Toplak et al., 2003). 2-Amino-1,3-thiazole, the structure of which was reported by Caranoni \& Reboul (1982), is itself listed as a thyroid inhibitor (Merck, 2001).

(I)

The dihedral angle between the thiazole and benzene rings is $81.88(9)^{\circ}$, comparable to $87.21(2)^{\circ}$ and $89.70(2)^{\circ}$ reported for 3 -butyl-4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazole-

Figure 1
The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Received 25 November 2005
Accepted 5 December 2005
Online 14 December 2005

Figure 2
A view of the hydrogen-bonding interactions (dashed lines) in (I). For the sake of clarity, H atoms bonded to C atoms have been omitted. $C g 1$ is the centroid of the C9-C14 benzene ring [symmetry code: (i) $\frac{1}{3}-x, \frac{2}{3}-y$, $\left.\frac{2}{3}-z\right]$.

2(3H)-thione (Kırılmış et al., 2005a) and 3-cyclohexyl-4-(3-methyl-3-phenylcyclobutyl)-1,3-thiazole-2(3H)-thione (Kırılmış et al., 2005b), respectively. The cyclobutane ring is puckered; the $\mathrm{C} 5 / \mathrm{C} 4 / \mathrm{C} 6$ plane forms a dihedral angle of $20.8(2)^{\circ}$ with the C6/C7/C5 plane. This compares well with the values of $24.37^{\circ}, 23.82(3)^{\circ}$ and $23.5(4)^{\circ}$ reported for the abovementioned compounds (Kirilmįs et al., 2005a,b) and hexafluorocyclobutane (Swenson et al., 1997), respectively. An intermolecular $\mathrm{N} 2-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$ hydrogen bond (symmetry code as in Table 2) links the molecules, forming a hydrogen-bonded dimer of graph-set motif $R_{2}^{2}(8)$ (Fig. 2). Of greater interest is an intermolecular $\mathrm{N}-\mathrm{H} \cdots \pi$ interaction between the amino group and the benzene ring in the dimer (Table 2). As a result of these interactions, as well as van der Waals interactions, the structure exhibits hexagonal cavities of diameter $3.774 \AA$ along the c axis (Fig. 3).

Experimental

To a solution of thiourea $(0.76 \mathrm{~g}, 10 \mathrm{mmol})$ in absolute ethanol (50 ml), a solution of 3-(2-chloro-1-oxoethyl)-1-methyl-1-p-xylylcyclobutane ($2.50 \mathrm{~g}, 10 \mathrm{mmol}$) in absolute ethanol (20 ml) was added dropwise at $323-327 \mathrm{~K}$ with continuous stirring. By monitoring the IR frequency of the carbonyl group of 3-(2-chloro-1-oxoethyl)-1-methyl-$1-p$-xylylcyclobutane, completion of the reaction was easily seen. After cooling to room temperature, the solution was made alkaline with an aqueous solution of $\mathrm{NH}_{3}(5 \%)$, causing the separation of dark-green crystals of (I) from the reaction mixture. The precipitate was filtered off, washed with an aqueous ammonia solution and water several times, dried in air and recrystallized from water-ethanol (1:4) by slow evaporation (yield 76%; m.p. 407.5 K). Characteristic ${ }^{1} \mathrm{H}$ NMR shifts $\left(\mathrm{CDCl}_{3}\right.$, p.p.m.) are at $1.54\left(s, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ on cyclobutane), 2.22 ($s, 3 \mathrm{H}, o-\mathrm{CH}_{3}$ of p-xylyl), 2.33 ($s, 3 \mathrm{H}, m$ - CH_{3} of p-xylyl), 2.48 (m, $\left.2 \mathrm{H},-\mathrm{CH}_{2}-\right), 2.59\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right), 3.43(q, J=9.2,1 \mathrm{H},>\mathrm{CH}-)$, $5.55\left(\right.$ brs $\left., 2 \mathrm{H}, \mathrm{NH}_{2}\right), 5.96(s, 1 \mathrm{H}$, aromatic in thiazole ring), $6.89(s, 1 \mathrm{H}$, aromatic), 7.03 ($\mathrm{m}, 2 \mathrm{H}$, aromatic). Characteristic ${ }^{13} \mathrm{C}$ NMR shifts

Figure 3
A view of the cavities along the c axis. H atoms have been omitted.
$\left(\mathrm{CDCl}_{3}\right.$, p.p.m. $)$ are at $169.18,155.84,149.80,135.57,132.12,131.43$, $127.11,126.85,100.39,41.89,39.46,31.09,28.05,21.29$ and 19.71.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{~S}$

Mo $K \alpha$ radiation

$M_{r}=272.40$
Trigonal, $R \overline{3}$
$a=20.7083$ (11) \AA
$c=18.2954(10) \AA$
$V=6794.6(6) \AA^{3}$
$Z=18$
$D_{x}=1.198 \mathrm{Mg} \mathrm{m}^{-3}$
Cell parameters from 37485
reflections
$\theta=1.6-28.0^{\circ}$
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, pale yellow
$0.57 \times 0.48 \times 0.38 \mathrm{~mm}$

Data collection

Stoe IPDS-2 diffractometer ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\min }=0.900, T_{\max }=0.944$
37485 measured reflections 3557 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.100$
$S=1.05$
2851 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=27.8^{\circ}$
$h=-26 \rightarrow 27$
$k=-27 \rightarrow 27$
$l=-23 \rightarrow 23$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0456 P)^{2}\right. \\
\quad+3.0488 P] \\
w h e r e P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }_{\mathrm{A}},{ }^{\circ}\right)$.

S1-C2	$1.7251(16)$	N1-C3	$1.3890(16)$
S1-C1	$1.7424(14)$	C2-C3	$1.3436(19)$
N1-C1	$1.2998(17)$	C3-C4	$1.4914(19)$
N1-C1-N2	$124.34(13)$	C3-C4-C5	$117.36(12)$
N1-C1-S1	$114.56(10)$	C9-C7-C5	$116.10(12)$
C2-C3-C4-C6	$124.11(15)$	C2-C3-C4-C5	$-133.16(15)$
N1-C3-C4-C6	$-55.34(17)$	N1-C3-C4-C5	$47.39(18)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 1 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.91(2)$	$2.15(2)$	$3.0540(19)$	$180(2)$
$\mathrm{N} 2-\mathrm{H} 3 \cdots \mathrm{Cg} 1^{\mathrm{i}}$	$0.83(2)$	$2.45(1)$	$3.307(2)$	$167(2)$

Symmetry code: (i) $-x+\frac{1}{3},-y+\frac{2}{3},-z+\frac{2}{3} . C g 1$ is the centroid of the C9-C14 benzene ring

All H atoms, except for H 1 and H 3 , were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances in the range of $0.93-0.96 \AA . U_{\text {iso }}(\mathrm{H})$ values were constrained to be 1.2 and 1.5 times $U_{\text {eq }}$ of the carrier atom. Atoms H1 and H3 were located in a difference map and refined freely.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

References

Ahmedzade, M., Çukurovali, A. \& Koparir, M. (2003). J. Chem. Soc. Pak. 25, 51-55.
Caranoni, P. C. \& Reboul, J. P. (1982). Acta Cryst. B38, 1255-1259.
Coghi, L., Lanfredi, A. M. M. \& Tripicchio, A. (1976). J. Chem. Soc. Perkin Trans. 2, pp. 1808-1810.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Kırılmış, C., Koca, M., Arici, C., Heinemann, Frank W. \& Ahmedzade, M. (2005a). Acta Cryst. E61, o555-0556.
Kırılmış, C., Koca, M., Arici, C., Heinemann, Frank W. \& Ahmedzade, M. (2005b). Acta Cryst. E61, o1176-o1177.
Koparir, M., Cansiz, A., Ahmedzade, M. \& Çetin, A. (2004). Heteroatom Chem. 15, 26-31.
Lynch, D. E., Nicholls, L. J., Smith, G., Byriel, K. A. \& Kennard, C. H. L. (1999). Acta Cryst. B55, 758-766.

Merck (2001). The Merck Index, 13th ed. New York: John Wiley \& Sons.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - $A R E A$ (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Swenson, D. C., Yamamoto, M. \& Burton, D. J. (1997). Acta Cryst. C53, 14451447.

Toplak, R., Lah, N., Volmajer, J., Leban, I. \& Le Maréchal, A. M. (2003). Acta Cryst. C59, o502-o505.

